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In solving a number of problems of the theory of creep (for instance, 

the problems of stability) by the variational methods. it turns out to 

be more convenient to vary simultaneously the stresses and displacements 

or the stress-rates and displacement-rates. In the theory of creep, the 

variational method based on varying the stresses and displacements was 

first proposed by Rosenblium [ll for the study of stability of a 

longitudinally compressed bar under conditions of creep. Here, the 

stresses and displacements which satisfy the equilibrium equations and 

given boundary conditions were varied. Later, in [zI for the creep of a 

body according to the flow theory [31, a variational equation based on 

varying the stress-rates and displacement-rates was proposed. 

Shown below is a variational equation for the creep of a body accord- 

ing to the flow theory [31 with extensions and shears small as compared 

to unity [41, based on varying the stresses and displacements which 

satisfy the equilibrium equations, as well as those obtained from the 

equilibrium equations by differentiation with respect to time (for the 

sake of brevity the latter equations are referred to as the rate equi- 

librium equations). 

1. At a fixed instant of time t the actual stresses ajk and displace, 

ments ui are related to one another and also to the stress-rates and 

displacement-rates by the equations c3.41 

I@, -I- 
Ti = (6, + Ui,k) ajknjv pi = [(hi&. + Ui,k) ajk + ;i,@jkl nj 

“jk = aW I hjkv kjk = ‘12 (;j,k + ;k,j + &,j Ui,k + ‘i,k ui,j) 
w=ri+anlat (i, A, j = 1, 2, 3) 
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Here, the Lagrangean curvilinear coordinate system is used, with 

body forces assumed to be absent, Eik is the Kronecker delta, the dot 

designates differentiation with respect to time, Ti is the projection 

of the module of surface tractions in the deformed state on the ith co- 

ordinate axis of the undeformed state; nj is the cosine of the angle 

which the outward normal to the surface of the body before deformation 

makes with the jth coordinate axis of the undeformed state; h is a func- 

tion of stresses and time; n is a function of stresses (the energy of 
elastic deformat ions). 

2. Let us compare, at a fixed instant of time t, the actual state of 

stress and deformation with another one which is characterized by the 

same stress-rates and displacement-rates but has different stresses and 

displacements, namely the stresses ajk + 6a. and displacements ai +6ui. 
jk 

which are infinitely close to the actual ones and which satisfy the 

equilibrium equations and the rate equilibrium equations. These stresses 

and displacements will be called admissible. 

Substituting the admissible stresses and displacements into the equi- 

librium equations and the rate equilibrium equations, and keeping in- 

finitesimals of the first order only, we find that the variations of 

stresses and displacements must satisfy the equations 

According to (1.2), the variations of the strain-rates are related 

to the variations of the deformations by the formula 

. . 
[“],k6uf,k + ‘i.kbjk] .j = ’ (2.U 

6ejk = l/a (;i,jaui,k + ii,k&ui,j) (2.2) 

3. Since the actual stresses and displacements 

equat ions, it follows that [4, Chap. 31: 

ajkejk dv = TiuidS 
s 
S 

satisfy the equilibrium 

Here, V, S are the volume and surface of the body before deformation. 

The admissible stresses and displacements also satisfy the equilibrium 

equations. Therefore 

(ajk + bjk) (ejk + aijk) dV = \ (Ti + 8Tf) ;ids (3.1) 
V S 

Omitting the second-order infinitesimals we find 

c 
v 

Ujkdejkdlr + s ;jk8ajkdV - 6 s TihidS = 0 
V S 

(3.2) 
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Formula (3.2) can be readily verified through direct integration by 

parts utilizing relations (2.2) and equations (2.1). 

4. It follows from (1.2) that the second term in (3.2) is the vari- 

ation of the integral 

5 
W dV 

V 

Let us show that the first term in (3.2) also is the variation of a 

certain expression. Integrating the second of equations (2.1) multiplied 

by ui over the volume of the body we find 

With the use of (1.1). (2.2) and (4.1). the first term 
be written in the form 

s 1 d’ 
"jrSejr dir = 2 6 dt 

s 

~i;.X"i,kui Jo - 

s 

ui6?‘idS 

V V s 

in (3.2) can 

(4.2) 

Let Su, Su, Su, be the parts of the surface S(S = S, + So + So,). on 

which, respectively, the displacements, the surface tractions and the 

mixed boundary conditions are given. Then 

s ui&+idS = 6 i&dS f 1 (Fi - $) uidS f 5 [i& + (+” - +J uvl dS ) (4.3) 
s SO S ou 

Here, the given values of the components of displacements and rates 

of surface tractions are designated by bars. It follows from (4.2) and 

(4.3) that the first term in (3.2) is a total variation, so that (3.2) 

takes the form 

6cD = 8 { S [W + -& & (ujkui,kui,J] dv - 5 Ti&a - 
V 

- s i&dS - 1 (+i - 5) uidS - i iiyPv + (?, - i,) %I dS 
> 

= 0 (4.4) 

%A SO SOU 

Among the stresses and displacements which satisfy the equilibrium 

equations and the rate equilibrium equations, the true distribution of 

stresses and displacements is characterized by the functional 0 being 

stationary. 

When not only the extensions and shears are small as compared to 

unity, but also the angles of rotation [41, the displacements do not 
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appear in the equilibrium equations and hence are not varied; the rates 

of surface tractions are expressed in terms of stress-rates only, and 
consequently are not varied either, and the variational equation (4.4) 

transforms into the one given by Kachanov 131 

8@ = 8 { S W ~ - I Ti ;idS} = 0 

V 

If for arbitrary magnitudes of extensions and shears the relation be- 

tween the strain-rates and the generalized stresses ujk* (see [4, Chap. 

2, Sec. 71) can be taken in the form 

k,, = awlas,; 

then the variational equation (4.4) is valid also for arbitrary magni- 

tudes of extensions and shears. In that case in (4.4) crjk should be 
interpreted as generalized stresses. 
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